Extending smooth cyclic group actions on the Poincaré homology sphere
نویسندگان
چکیده
منابع مشابه
Symmetries Shared by the Poincaré Group and the Poincaré Sphere
Henri Poincaré formulated the mathematics of Lorentz transformations, known as the Poincaré group. He also formulated the Poincaré sphere for polarization optics. It is shown that these two mathematical instruments can be derived from the two-by-two representations of the Lorentz group. Wigner’s little groups for internal space-time symmetries are studied in detail. While the particle mass is a...
متن کاملGroup actions on homology spheres
This can be stated in a more symmetric manner. Let r be any positive integer not equal to 3. Then n acts freely and homologically trivially on Z r i ff n acts freely and homologically trivially on SL In fact, there is a one-to-one correspondence between such actions on U and such actions on S r. (The classification of such actions is discussed in w In addition the actions constructed have the p...
متن کاملExtending Free Cyclic Actions on Spheres
Connolly and Geist have reduced the problem of determining which free cyclic actions on spheres extend to free actions of specified supergroups to a problem involving a certain transfer map. In this note we develop some algebraic tools for calculating the transfer and show that some cyclic actions do not extend to certain supergroups.
متن کاملOn the cyclic Homology of multiplier Hopf algebras
In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...
متن کاملSome Cyclic Group Actions on Homotopy Spheres
In [4J Orlik defined a free cyclic group action on a homotopy sphere constructed as a Brieskorn manifold and proved the following theorem: THEOREM. Every odd-dimensional homotopy sphere that bounds a para-llelizable manifold admits a free Zp-action for each prime p. On the other hand, it was shown ([3J) that there exists a free Zp-action on a 2n-1 dimensional homotopy sphere so that its orbit s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 2016
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.2016.282.9